Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

نویسندگان

  • Feilong Gong
  • Shuang Lu
  • Lifang Peng
  • Jing Zhou
  • Jinming Kong
  • Dianzeng Jia
  • Feng Li
چکیده

Porous Mn₂O₃ microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn₂O₃ microspheres by first producing MnCO₃ microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO₃ microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for generating amorphous carbon onto the surfaces of Mn₂O₃ nanorods consisting of microspheres. The C@Mn₂O₃ microspheres, prepared at 500 °C, exhibit highly enhanced pseudocapacitive performances when compared to the particles after annealed at 400 °C and 600 °C. Specifically, the C@Mn₂O₃ microspheres prepared at 500 °C show high specific capacitances of 383.87 F g-1 at current density of 0.5 A g-1, and excellent cycling stability of 90.47% of its initial value after cycling for 5000 times. The asymmetric supercapacitors assembled with C@Mn₂O₃ microspheres after annealed at 500 °C and activated carbon (AC) show an energy density of up to 77.8 Wh kg-1 at power density of 500.00 W kg-1, and a maximum power density of 20.14 kW kg-1 at energy density of 46.8 Wh kg-1. We can attribute the enhanced electrochemical performances of the materials to their three-dimensional (3D) hierarchical structure in-situ coated with carbon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

Hierarchical nanospheres based on Pd nanoparticles dispersed on carbon coated magnetite cores with a mesoporous ceria shell: a highly integrated multifunctional catalyst.

The design and fabrication of core-shell nanostructures with steerable morphologies and tailored performances have aroused abundant scientific studies for organic transformations. We here report the preparation of multifunctional and highly efficient core-shell microspheres, which bear a carbon-protected magnetic Fe3O4 core, a transition layer of active Pd nanoparticles (NPs) and an outer shell...

متن کامل

Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect.

Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar-integrated assembly of hierarchical ZnCo₂O₄ nanowire arrays/carbon fibers electrodes, a new class of flexible all-solid-state planar-integrated fiber supercapacitors are designed and produced via a low-cost and facile method. The as-fabricated flexible devices exh...

متن کامل

Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors

Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15-30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area o...

متن کامل

Acetone sensing properties of hierarchical WO3 core-shell microspheres in comparison with commercial nanoparticles

In this work, hierarchical WO3 core-shell microspheres were synthesized via a facile template-free precipitation method. Gas sensing properties of the synthesized powder to acetone and some other volatile organic compounds were comparatively investigated with commercial WO3 nanoparticles. The synthesized and commercial powders were characterized by X-ray diffraction, scanning electron microscop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017